Nanocellulose has been a hot topic for several years and numerous applications have been proposed, some of them more potential than the others. The major limitation for the wider use of nanocellulose has been the limited commercial availability. The term nanocellulose, however, covers several different types of nano- and microfibrillated and fibrillar cellulose products. One of those is bacterial cellulose which is also more commonly referred as bio-cellulose. It might come as a surprise for many of us, but bio-cellulose is in fact present in several commercially available products. One of those were the legendary Sony MDR-R10 headphones which were introduced already as early as 1988.
Exilva® is Borregaard's innovative additive within the field of Cellulose fibrils / Microfibrillated cellulose (MFC). It is a natural and sustainable bio-based problem solver, that improves rheology and stability in product formulations. Through this blog you will learn more about the potential impact you can get from this wonderful product.
Dust originating from abrasion of dry materials can cause a danger to the health and environment. One of the industries that is paying a lot of attention to dust control is the seed treatment industry. Seed treatments are an essential part of today’s agriculture and it means applying the crop protections products, like insecticides and fungicides, directly on the seeds before planting. This is regarded as an effective way to apply the crop protection products and can reduce the needed amount of the products in total. However, the applied substances can start wearing off from the seeds when they are transported and handled which can cause unhealthy dust.
Dr. Julien Bras from the Grenoble Institute of Techonology has been working in the field of cellulose fibrils, nanocellulose and microfibrillated cellulose for two decades. He is considered as one of the pioneers on the concept as we know it today. In this 5 minutes chat with Dr. Bras, we touched upon several topics regarding this new material. Do not miss out on the opportunity to listen in to Dr, Bras ideas one some of the directions the cellulose fibrils and nanocellulose will be taking in the future.
Cellulose fibrils has been present in the academic sector since the 1980’s, but it is completely newborn in a commercial sense. I experience from time to time that the mix up between cellulose fibrils and soluble cellulose (polymers) can create issues in understanding the full potential of the fibrils within a formulation. In this blog post I will try to give you a brief overview of why cellulose fibrils is quite different from the other types of cellulose products as you have learned to know them.
Typically, when using polymeric rheology modifiers, the viscosity of a formulation decreases with increasing temperature and the polymers can even degrade at higher temperatures. This can cause problems for the manufacturer or user, like instability of the formulation or difficulties in application. Cellulose fibrils and cellulose in general are stable against temperatures up to 200-300 °C, which makes them a good choice when a temperature stable viscosity modifier is needed. Earlier, we have described how you can achieve a stable viscosity in your formulation with cellulose fibrils in the temperature range of 20-90 °C. This time I would like to discuss what happens when we go over 100 °C, either in wet or dry state.
Within the field of nanocellulose and cellulose fibrils, there is an increasingly rapid pace of new developments, where the cellulose fibrils either appear on its own or as a part of an advanced relationship between several performance enhancers. Today I have collected two highly interesting, but very separate news articles for you, but where the common denominator is the ability to retrieve strength and performance from these types of materials. Enjoy!
Another episode of Topic Tuesday where we break down the rheological profile of cellulose fibrils under certain conditions. This week we will show you the robustness of your product's rheology profile under different temperatures when using cellulose fibrils.
There are many different solutions for reducing wrinkles and age marks on the skin. These range from long term permanent treatments of the skin to formulations that have immediate, temporary and only optical effects on the skin. In most formulations and products, a combination of a permanent solution with an immediate effect is desired.
If you google the word medical device, you will get pictures of sophisticated hospital equipment and diagnostic devices. In practice, a term medical device is wider than just that and covers a range of different kinds of articles, starting from plasters and bandages to endosseous implants and implantable pacemakers, intended to be used for therapeutic purposes of humans or animals. We have previously written about the role of MFC in wound care products and today we are going to take a step deeper to the current status of nanocellulose in medical devices, especially topical and implantable ones.
Subscribe to our newsletter
Stay up to date with the latest from The Exilva Blog and receive the latest news straight to your inbox.