Have you run into problems with incompatibilities between the surfactant you would like to use and other ingredients in your formulation? This is a common problem since surfactants are quite versatile in charge and chemical structure as well as in functionalities. This could for example lead to undesired interactions with oppositely charged ingredients.
Exilva® is Borregaard's innovative additive within the field of Cellulose fibrils / Microfibrillated cellulose (MFC). It is a natural and sustainable bio-based problem solver, that improves rheology and stability in product formulations. Through this blog you will learn more about the potential impact you can get from this wonderful product.
Many strategy processes start with the question “how can we improve our business?”. This is a question leading to many possible routes, but keeping in touch with where the major lines and trends around you are moving is always important. In our increasingly disruptive age, many of the drivers for new strategy are coming from the functionality of new products or solutions. So how can you as an industrial company keep your company in front of the rest or obtain that situation? I will show you some of my ideas on how you, by utilizing already available solutions out there, can take the necessary steps to ensure you’re the one who disrupts, not being the one that’s disrupted.
A lot of work on the MFC and nanocellulose is going on in an increased amount of business fields, all over the globe. We have seen a significant pick up in the strength and reinforcement functionalities of microfibrillated cellulose during the last 6-12 months, where its ability to provide significant strength improvements is clear. This week we have collected three new interesting areas of giving strength and barrier improvements, with exciting opportunities like bone construction with 3D printing, carbon fiber replacement, and water purification. This is your Exilva blog on exciting innovation, don’t miss out on our collection of news this week, and enjoy your reading!
Oil recovery with all different operations is a fascinating field for a rheologist since so versatile rheological properties are required in the processes. Microfibrillated cellulose has been recognized as potential green, safe rheology modifier for the oil recovery industry. Why is that?
Making foams, in other words introducing gas in a solid or liquid, is needed in industries like construction, composites, home care and personal care. Solid foam is a clever way to produce lightweight structures and insulation materials, whereas many personal care and detergent formulations are required to form a liquid foam.
Japanese companies have worked with the cellulose nanofibers (CNF) for more than 20 years and are in the forefront when it comes to technology and application development. You could really say that nanocellulose is big in Japan. In this article we bring you the latest on the market development.
In my previous blog post, I covered the characteristics of microfibrillated cellulose (MFC) and fumed silica as raw materials used for industrial purposes. I focused on how MFC provides a viable alternative to fumed silica in many applications since they both have large surface areas with similar surface active groups. However, the physical network properties of the two materials differ and may lead to new and exciting discoveries in the end products.
The market for packaging and packaging solutions is expected to grow in the next four years due to factors like increased online shopping*. At the same time, the demand for sustainable packaging becomes more evident. In this article, we explore the compatibility of MFC with PLA and discuss what could be the benefits of such a mixture in various packaging products.
From time to time I get comments from people interested in microfibrillated cellulose (MFC) that they cannot dissolve the product, and the formulation remains hazy no matter how much they mix. Alternatively, they ask how low the concentration needs to be to get a transparent formulation. The answer to these questions is that microfibrillated cellulose does not dissolve in water (or in common solvents) which means that it does not make a transparent solution, no matter how much it is mixed or how low concentration is used. There is no need to worry, however; the non-dissolved fibers are the key factor to the interesting behavior of MFC. Let’s look at the translucency of MFC in more detail.
Subscribe to our newsletter
Stay up to date with the latest from The Exilva Blog and receive the latest news straight to your inbox.