MFC review: What’s new in the world of mfc/nanocellulose?

Ole Martin Kristiansen | November 15, 2016



A lot is happening in the world of microfibrillated cellulose and nanocellulose these days. One hot topic is new, engineered materials with MFC. As an example, our blog post on safer batteries with MFC sees a lot of interest, and the ability for MFC to enter into composite materials is an expanding field.  In this week’s post, I will try to give you an update on what’s happening with MFC (and nanocellulose) out there, with a focus on the interesting application fields of materials/composites and water purification.

Developing a new kind of material is fascinating work and requires many innovations before the product is available for the market. One important part of the development work is to find analysis methods t for characterizing the quality. Those methods should ideally describe the material well but also be reproducible and reliable. Often this is ensured by using standard methods, but for new materials, like microfibrillated cellulose (MFC), they do not exist yet. Even though some work has been initiated by Canadian Standards Association (Z5100-14 Cellulosic nanomaterials – Test methods for characterization) and TAPPI, there are no proper guidelines for analysis of MFC yet. As a guidance to those unfamiliar with microfibrillated cellulose, I will share my tips for a reliable, reproducible analysis of MFC.

Cosmetic products are one of the most exciting application areas for microfibrillated cellulose (MFC). The opportunities within this field are almost endless as Mr. Rainer Kröpke from Cosmacon GmbH has learned when working with MFC in cosmetic applications. Mr. Kröpke has a long experience in formulating cosmetic products first at Beiersdorf (Germany) and since 2012 as a consultant. Read below his interview where he shares his experiences with all our blog readers.

How MFC affects light transmission and reflection

Marvin Hars | September 20, 2016


Microfibrillated Cellulose (MFC) is known for its high surface area and large amount of available functional OH groups that provide an outstanding chemical and physical interaction. In addition, due to the strong 3D network, MFC gives a new dimension of stability to various formulations like adhesives, coatings, emulsions, dispersions and so on. In our previous articles, we have already talked about different benefits of using MFC, such as open time or spraying thick formulations. With paints and coatings, the ability to control light transmission and reflection is important.  Now your next question is: How can MFC affect this in any way? Follow me and let’s find out!

The future of MFC: Applications and uses

Ole Martin Kristiansen | September 13, 2016


Microfibrillated cellulose (MFC) is already present in a variety of applications, like adhesives, coatings, cosmetics and so on. But where will the future applications of this new material be? Will we find new functionalities from the MFC and how will it work?  My aim with this post is to inspire you to open your mind and let your ideas flow on how you can create a better product using the MFC.

Among the many potential applications of cellulosic nanomaterials, one of the most promising is the use of microfibrillated cellulose (MFC) to enhance the surface of paper products. The vast majority of paper products, from cardstock to fast-food packaging, receive some type of functional coating during manufacturing to improve end-use performance. Coatings can impart many different properties to paper products, including water, oil and grease resistance, reproduction quality, absorbency and smoothness. Many different materials are used to coat paper surfaces ranging from minerals, natural and synthetic binders, and polymers.

MFC Review: news from the patent world

Inger Mari Nygård Vold | August 30, 2016


On the Exilva blog, we will on regular basis bring you selected news from the latest application research both by the industry as well as academic sources. In this blog post, I’ve picked two examples from recently published patent applications, representing the use of MFC in material science and biomedical applications.

Microfibrillated cellulose (MFC) has many properties wanted in cosmetic products: good skin feel, desired rheological properties and improved stability of formulations. Moreover, it is a natural raw material, an increasing trend in cosmetics. MFC is made of natural cellulose sources and can be prepared by different processes. Both the source and the process determine the composition of the MFC and possible impurities that the MFC could have. It is, therefore, essential to have good control of both the composition of the material (see also our blog post about the raw materials of MFC) and of the process to prepare it. This is especially true when it is to be used in certain applications. Cosmetic products are an example of applications where the purity of MFC is essential since it affects us, our society and our environment all at once. 

MFC & Life Cycle assessment

Ole Martin Kristiansen | August 16, 2016


Sustainability is a widely used concept, but it is critical to understand what it means and that it is more than just a bunch of production data or a waste reduction plan. Cradle-to-cradle thinking is necessary. The whole life cycle, the production, the use and the disposal of the end product matters.


Subscribe to our newsletter

Stay up to date with the latest from The Exilva Blog and receive the latest news straight to your inbox.