Microfibrillated cellulose (MFC) has a good film-forming ability, where the film is strong and light. In addition, the films are opaque, translucent or even transparent depending on the thickness of the film and type of MFC. They also show good oxygen barrier properties. Moreover, MFC can be combined with different polymers or fillers to obtain even more versatile material. In this post, we want to show the potential of MFC films in various applications. Let’s start by discussing how MFC films can be made and then see what kind of applications these films may have.
Posts about Cellulose fibrils
Hydroxyethyl cellulose (HEC) and Exilva microfibrillated cellulose (MFC) can both be used as rheology modifiers in a variety of industries to prevent sedimentation and settling. In this article, I review the ability of the materials to give a yield stress in a waterbased system and, because of that, provide anti-settling and anti-sedimentation behavior. Tune-in on a comparison between these two rheology additives.
The pursue for a more efficient and increasingly EHS improved way of incorporating microfibrillated cellulose into polymers for polymer melts (thermoplastics) has been going on for years. Thermoplastics are an important source for many final products and applications. By introducing microfibrillated cellulose into polymers by the means of liquid suspension, Gneuss have been able to avoid the agglomeration of powder form similar particles, as well as improve the EHS profile of such a process.
Modified polyurea and Exilva Microfibrillated cellulose (MFC) can both be used as rheology modifier in a variety of industries to prevent sedimentation and settling. In this article, I review the ability of the materials to give a yield stress in a waterbased system and, because of that, provide anti-settling & anti-sedimentation behavior. Tune-in on a comparison between these two rheology additives.
Clay (including montmorillonite and bentonite) additives and Exilva microfibrillated cellulose (MFC) have a lot in common since they both can be used as rheology modifier in different industries. However, there are also clear differences. In this article, I will review the ability of the materials to provide yield stress and subsequent anti-settling & anti-sedimentation benefits. Tune-in on a comparison between two of the most potent anti-settling & anti-sedimentation additives available.
Exilva microfibrillated cellulose and fumed silica are both used for controlling the rheology of liquid systems, such as anti-settling and anti-sedimentation. But when we are comparing the two technologies, we also see differences. In this article, we will show you how the microfibrillated cellulose and fumed silica builds yield stress, and how they consequently can give good anti-settling and anti-sedimentation benefits.
Sedimentation of solid particles in liquid materials, like paints and inks, is caused by gravitational force pulling particles of high density down. In the worst case, sedimentation can result in settling, the formation of a hard layer of solid material on the bottom of the can. How to avoid this?
When most people were talking about the brutal polar vortex that hit Chicago earlier this year, I am sure many were looking for ways to best protect the products they are producing, transporting, storing and using from being destroyed by freezing. In this blog post, I will briefly mention a few tips on how to make products freeze-thaw stable such that they can be used in winter harsh areas.
Solving problems you have or initiate new innovations can lead down quite different paths. Sometimes the urge to get rid of a problem can lead to many quick decisions, but what should one really look for in these types of situations? Should your standard tool box of problem solvers be used, or do you have the opportunity to focus on upgrading this box? In this blog post, I will try to show you some concrete examples why adding new tools to your tool box can improve your functionalities beyond your scope, using the microfibrillated cellulose as an example. Simply, why new functionality beats substitution.