Montmorillonite (Bentonite) clay and cellulose fibrils has a lot in common since they both can be used as a rheology modifier in different industries. However, there are also clear distinct differences. I aim to show you how I reflect on these two product technologies, and how you can look for synergies and new innovations when using cellulose fibrils and clay. I will first review the non-soluble nature which is common for these materials and then show how this is reflected in the rheology and stability properties of each. I will also focus my discussion on the bentonite branch of montmorillonite clays due to its similarities with the cellulose fibrils
Exilva® is Borregaard's innovative additive within the field of Cellulose fibrils / Microfibrillated cellulose (MFC). It is a natural and sustainable bio-based problem solver, that improves rheology and stability in product formulations. Through this blog you will learn more about the potential impact you can get from this wonderful product.
Welcome to the first of our brand new video series; Topic Tuesday, brought to you by the Exilva Blog. Topic Tuesday is dedicated to one specific topic, providing you with information on cellulose fibrils straight from the top of our head. We'll kick it all of with a discussion about the importance of correct dispersion and how the effect of tip speed affects the end result.
Traveling around talking about microfibrillated cellulose for the past 8 years, has thought me an important lesson; always make sure that people understand how to disperse the fibrils sufficiently. This is really the main factor in gaining the key functionalities from the product. So how can you make sure that you are getting the most out of the cellulose fibrils when you are using it in your formulation? In this article I will give you some guidance and video tool on to how to get this right from the start.
I have been working with cellulose fibrils for over 6 years now, and every day there seems to be new opportunities for this product. It occurred to me the other day that my cleaning product at home contained fairly rough abrasives, enabling me to clean off dirt and stains. In the field of cleaning, this is called “agitation” and is part of the C-H-A-T cleaning formula: Chemical-Heat-Agitation-Time. Could this be something for cellulose fibrils? Let me share with you a couple of my thoughts on where the cellulose fibrils may give you some functionality.
Water soluble polymers have been used for decades, bringing various functionalities to a high number of applications. The reason for their popularity is the ability to being customized by changing molecular weight and molecular chain length, their high efficiency in use (especially the ones with high molecular weight), and their relatively simple handling. However, in certain cases polymeric viscosifiers fail to offer the needed performance and microfibrillated cellulose can offer exactly the desired properties.
As usual, the landscape of cellulose fibrils and nanocellulose is moving, with both academia and commercial producers introducing new concepts and products. This week, I picked up on two distinct stories which I found interesting; VTT in Finland has been working on 3D printing for wound care and decoration, while the Norwegian University of Science and Technology together with the University of Calgary is looking into how the nanocellulose can improve oil recovery rates.
As a new boy in the world of cellulose fibrils, I am steadily getting an overview of what potential users of cellulose fibrils are interested in. The unique combination of properties that cellulose fibrils has is the obvious point most are interested in. In addition, the natural and renewable aspect to the material and the possibility to replace oil-based chemicals is becoming more and more important. But could there be more than that?
You might have noticed how the air quality around us is changing constantly. Do you remember the last time that you have filled your lungs with fresh and clean air? Every day we are exposed to pollutants in the air we breathe - chemicals as well as fine particles - whether we are staying outdoors or indoors. This problem not only affects the people in developing countries, but the majority of the population on Earth.
2017 has been a year of record storms and hurricanes. In August and September, the hurricanes lined up in the Atlantic and entered into populated areas one after another. The National Oceanic and Atmospheric Administration (NOAA) in the US reports that the statistics show an upward trend, also correlating to the size and magnitude of these hurricanes. The statistical data show uncertainties during the period from 1880s to 2016, but NOAA believes that the trend (based on research) shows a significant increase both in frequency and magnitude going forward. Why do I start my blog post on a nanocellulose blog with this? Well, because the link NOAA put between the Atlantic hurricane trends and global warming is obvious.
Subscribe to our newsletter
Stay up to date with the latest from The Exilva Blog and receive the latest news straight to your inbox.